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We extend the Blume-Emery-Griffiths �BEG� model to a two-component BEG model in order to study
two-dimensional systems with two order parameters, such as magnetic superconductors or two-component
Bose-Einstein condensates. The model is investigated using Monte Carlo simulations, and the temperature-
concentration phase diagram is determined in the presence and absence of an external magnetic field. This
model exhibits a rich phase diagram, including a second-order transition to a phase where superconductivity
and magnetism coexist. Results are compared with experiments on cerium-based heavy-fermion superconduct-
ors. To study cold-atom mixtures, we also simulate the BEG and two-component BEG models with a trapping
potential. In the BEG model with a trap, there is no longer a first-order transition to a true phase-separated
regime but a crossover to a kind of phase-separated region. The relation with imbalanced Fermi mixtures is
discussed. We present the phase diagram of the two-component BEG model with a trap, which can describe
boson-boson mixtures of cold atoms. Although there are no experimental results yet for the latter, we hope that
our predictions could help to stimulate future experiments in this direction.
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I. INTRODUCTION

Mixtures of 3He and 4He atoms exhibit a rich phase dia-
gram, where besides a normal �N� phase, there is a phase
where 4He is superfluid and a phase-separated �PS� region of
superfluid 4He and normal 3He.1 In 1971, Blume, Emery,
and Griffiths2 �BEG� proposed a model to describe such mix-
tures. They simplified the continuous phase of the superfluid
order parameter such that it could acquire only two values.
Although they made this very rough approximation and
modeled the uniform system in a lattice, their results are very
interesting. Qualitatively, they reproduced the right phases
and the right orders of the phase transitions. Furthermore, if
disorder is introduced by placing the mixture into aerogel,
after some modifications,3 the model can still yield the ex-
perimentally observed phase diagram.4

Here, we generalize this model to a two-component case
in order to describe systems with two order parameters and
study the problem numerically, using Monte Carlo simula-
tions. The motivation for the model we are proposing is two-
fold. First, we would like to study condensed-matter materi-
als such as heavy fermions, high-Tc superconductors, and
organic superconductors. In particular, we want to study the
interplay between magnetic and superconducting �S� order-
ing in these materials. Both order parameters are modeled as
an Ising spin variable. Concerning the magnetism, we con-
sider the ferromagnetic �FM� and the antiferromagnetic cases
and investigate also the effect of an additional magnetic field.
We find that in the absence of a magnetic field, in the region
where the two orders coexist, the system is always phase
separated. When we add a magnetic field, we also find re-
gions with microscopic coexistence of the two phases. Sec-
ond, we want to study mixtures of cold atoms. Cold atoms
have emerged in recent years as an ideal simulator of
condensed-matter systems. Because experiments with cold
atoms are often carried out in a trap, we add a trapping
potential to the model. This fact qualitatively changes the
physics in the problem. For the case of a single-component

BEG model in a trap, the results are compared with experi-
mental and theoretical work on imbalanced Fermi mixtures.
For the case of the two-component BEG model, we make
predictions for the phase diagram of boson-boson mixtures.

The outline of this paper is the following: in Sec. II, we
introduce the two-component BEG model and investigate it
in the presence and absence of an external magnetic field.
The effect of a trapping potential is described in Sec. III. In
Sec. IV, we compare the results with magnetic superconduct-
ors and cold-atom systems. Our conclusions are presented in
Sec. V.

II. TWO-COMPONENT BLUME-EMERY-GRIFFITHS
MODEL

A. Original Blume-Emery-Griffiths model

A simple model for describing mixtures of bosonic and
fermionic degrees of freedom, e.g., mixtures of 3He-4He at-
oms, is the BEG model.2 The 4He atoms can be in a normal
or in a superfluid phase, whereas the 3He ones are in the
normal phase. BEG introduced a crude but effective approxi-
mation, which can capture the essential features of the prob-
lem: the continuous superfluid order parameter describing
the 4He atoms is oversimplified using Ising spin variables.
The phase of the wave function is therefore not allowed to
take any value on the unit circle but just the values Si= �1.
The remaining 3He atoms are described by introducing a
third value to the spin variable: Si=0.2

The model then consists of a fictitious spin variable Si,
which can take the values 0 and �1 on each site of a discrete
lattice. Here we consider a two-dimensional �2D� lattice with
N lattice points. There is only one atom per site and there are
no vacancies. The ordering of Si provides an order parameter
for the model, allowing to describe transitions from the fer-
romagnetic �superfluid� phase to the paramagnetic �normal�
phase. The number of 3He and 4He atoms is given by
N3=�i�1−Si

2� and N4=�iSi
2. The total number of sites is
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given by N=N3+N4. The magnetization, which is given by
the thermal average of the total spin M =�i�Si� /N provides
an order parameter for superfluid ordering, whereas the con-
centration of 3He c= �N3� /N is an additional order parameter,
which reflects the possibility of phase separation. The latter
is given in terms of the mean quadrupole moment of the
fictitious spin system Q=�i�Si

2� /N, i.e., c=1−Q. Hence, su-
perfluid ordering and phase separation in the 3He-4He mix-
tures are simulated, respectively, by magnetic ordering and
quadrupolar ordering in the BEG model.

The Hamiltonian of the BEG model reads as

HBEG = − J�
�ij�

SiSj + ��
�i,j�

Si
2Sj

2 + D�
i

Si
2. �1�

Here, �i , j� denotes nearest-neighbor pairs, J is the exchange
interaction, � is the biquadratic exchange, and D denotes the
crystal field, which incorporates the chemical potentials �3
and �4 for 3He and 4He.

Initially, BEG solved the Hamiltonian �1� without the bi-
quadratic exchange interaction, i.e., at �=0. In this limit their
model reduces to the Blume-Capel model.5 The phase dia-
gram of the latter is shown in Fig. 1. The first term in the
Hamiltonian �1� then leads to superfluid ordering below a
critical temperature Tc, which depends on the exchange inte-
gral J and on the concentration c of 3He atoms. If the tem-
perature is sufficiently low and c is sufficiently large, the
system separates into two phases: one which is superfluid
and poor in 3He atoms and another one which is normal and
rich in 3He atoms. This is equivalent to quadrupolar ordering
in the BEG model.

This area of research has been very active �see, e.g., Ref.
6 and references therein�. The BEG model has been studied
with a general � �see Refs. 7 and 8�; variations in this model
have been investigated to describe Ising magnets with mo-
bile defects9 and long- and short-range interactions have
been included.10

Although here we will be concerned with extensions of
the Blume-Capel model Hamiltonian,5 we will nevertheless
keep the reference to BEG because the main assumption of
our model relies on their original proposal of projecting the
phase of the wave function. It is interesting that in spite of

this very bold approximation, the phase diagram of the BEG
model �Blume-Capel Hamiltonian with the phase projection�
found by Monte Carlo simulations �see Fig. 1� exhibits large
similarities with the phase diagram of 3He-4He mixtures
measured by experimentalists.1 This agreement is the moti-
vation for the model we propose below.

B. Model

The main idea of studying superfluidity with the BEG
model relies on the U�1� symmetry breaking of the ground-
state wave function. For superconductivity and Bose-
Einstein condensation we have the same symmetry breaking;
hence we can try to model these phenomena in the same way.

Several physical systems exhibit two unequal symmetry-
broken phases simultaneously. A general Hamiltonian de-
scribing this class of systems reads as

H = − J1�
�ij�

�i� j − J2�
�ij�

sisj + D�
i

�i
2 + H�

i

�i, �2�

where J1 and J2 are the exchange interactions for �-type and
s-type bosons, respectively, D is an anisotropy field that con-
trols the number of lattice sites with nonzero �i, and H plays
the role of an external magnetic field, which may couple only
to the order parameter describing a magnetic transition. Here,
we consider a 2D lattice and assume that the “spins” ��i ,si�
can take the values �0,1�, �0,−1�, �1,0�, and �−1,0�. This
choice implies that only one kind of boson can occupy each
lattice site, i.e., we are implicitly assuming the constraint
si

2+�i
2=1 at each lattice site i. Notice that in the original

�one-component� BEG model, every site is occupied either
by a fermion ��=0� or by a boson ��= �1� and there is no
constraint. In the two-component BEG model considered
here, every site is occupied either by a boson of type
s= �1 or a boson of type �= �1. In this case, s=0 or
�=0 means that this site is not occupied by a boson of s or �
type. Therefore, the constraint si

2+�i
2=1 implies that every

site is only occupied by one type of boson and there are no
fermions in the problem.

The Hamiltonian �2� is appropriate for describing phase
transitions which require two order parameters: one describ-
ing the ordering of the fraction of the system with nonzero �
and the other one with nonzero s. This yields several possi-
bilities; both fractions can model superfluidity, superconduc-
tivity, or �anti�ferromagnetism. Possible applications could
be magnetic superconductors or two-component Bose-
Einstein condensates.

From now on, we will consider the fraction with non-
negative � as describing magnetism and s superconductivity
�preformed bosons that can Bose-Einstein condensate�. Thus,
�i represents the spin of particle i and si represents the dis-
cretized phase of the wave function. Therefore, J1 can be
both positive �ferromagnetism� and negative �antiferromag-
netism�, but J2 has to be positive. We define the concentra-
tion, the ferromagnetic, antiferromagnetic, and supercon-
ducting order parameters as

c =
1

N
�

i

�i
2, �3�
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FIG. 1. Phase diagram of the original BEG model obtained by
Monte Carlo simulations. N denotes the normal phase; SF denotes
superfluidity. Lines are guides for the eyes. The transition between
the normal and the superfluid state is second order; the transition to
the phase-separated regime is first order.
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mfm,� =
1

N
�

i

�i, �4�

maf,� =
1

N
�

i

�− 1�i�i, �5�

ms =
1

N
�

i

si. �6�

Note that mfm,� and maf,� can reach a maximum value of c
and ms can reach a maximum value of 1−c. We define the
ratio between the two coupling constants J2 and J1 as

K =
J2

�J1�
. �7�

Although we restrict our investigation to the simplest pos-
sible model including two order parameters, extensions in-
volving an interaction between the latter could be envisaged,
e.g.,

Hint = − J3�
�ij�

�i · sj . �8�

This term would allow us to address issues such as the com-
petition between singlet or triplet superconductivity in the
presence of ferromagnetism. Although very interesting and
certainly relevant to provide a more realistic description of
several heavy-fermion superconductors, this term will never-
theless be put to zero in our present studies.

C. Method

We investigate the two-component BEG model in a 2D
lattice by Monte Carlo simulations. To determine the location
of second-order phase transitions, we performed simulations
at constant concentration, in which the elementary moves
were flips of si and �i or nonlocal spin exchanges. The loca-
tion of the transition is then obtained from the peak location
of the magnetic susceptibility. The locations of first-order
phase transitions are obtained from simulations at constant
temperature. The elementary moves are local flips of si and
�i, as well as same-site replacements of si by �i and vice
versa. A jump in the concentration c as a function of the
anisotropy field D is then the signature of the phase transi-
tion �see Fig. 2, where this jump can be visualized for the
case of the original BEG model�.

All simulations are performed on lattices with approxi-
mately 40�40 sites. Per point in the phase diagram, simu-
lations were run over 3�105–3�107 Monte Carlo steps per
site, depending on the correlation times.

D. Zero magnetic field, H=0

In the absence of a magnetic field, the Hamiltonian �2�
has ferro-antiferromagnetic symmetry.

First, we consider K=1. In this case, J1=J2, and the shape
of the phase diagram must be symmetric under the transfor-
mation c→1−c. The results of the simulations are plotted in
Fig. 3. We see that it indeed obeys this symmetry and exhib-

its four phases: a S phase, where the order parameter ms is
nonzero; a FM phase, where mfm,� is nonzero; a PS regime
where the spins and the angular phases have formed ordered
clusters, and finally the N phase, in which there is neither
order nor phase separation. Analogous to the BEG model, the
transition from the phase-separated regions to other phases
are first order �dashed line�; the other ones are second order
�continuous line�.

Second, we consider the case K=0.1. The results of the
simulations are plotted in Fig. 4. We can understand the re-
sults as follows: J2 is much smaller than J1; hence the spins
will not pay much attention to the angular phases, and the
part of the phase diagram concerning the spins will be very
similar to the BEG model. Because J2 is so small, the phases
will only order at very low temperatures �at zero concentra-
tion, the temperature is ten times lower than the one at which
the spins order at a concentration of one�. If the concentra-
tion is slightly raised from zero, the system is already in the
phase-separated regime. All the states with a nonzero phase
have clustered and are not diluted by states with nonzero
spin. Therefore, the critical temperature in the phase-
separated region will approximately remain constant. Be-

0

0.2

0.4

0.6

0.8

1.85 1.95 2.05 2.15

c

D/J

kBT/J =0.61

FIG. 2. Concentration of 3He as a function of the anisotropy
field D for the original BEG model for kBT /J=0.61. At
�D /J�c�1.97, this concentration makes a jump, indicating a first-
order phase transition.
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FIG. 3. �Color online� Phase diagram for temperature �in units
of J1 /kB� versus concentration in the absence of a magnetic field,
for a relative coupling constant of K=1. N, S, FM, and PS indicate
the normal phase, superconductivity, ferromagnetism, and phase
separation, respectively. Solid lines represent second-order phase
transitions; dashed lines represent first-order ones. Lines are guides
for the eyes. Snapshots of the simulation are shown. Black �white�
represents �i=1 �−1�; red �blue� represents si=1 �−1�.
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cause the temperature at which the angular phases order is
lower than the temperature at which phase separation begins,
there is a phase-separated region in which the angular phases
of the wave function are not ordered, which may appear
unexpected at first sight. The transition within the phase-
separated regime, from the region where the angular phases
are not ordered to the phase where they are ordered �super-
conductivity�, is second order. This is expected because in
the phase-separated regime, all the phases have clustered and
the transition will be comparable with the transition in the
Ising model, which is also second order. Notice that although
the region where superconductivity sets in shrinks with de-
creasing K, there is no critical K below which the supercon-
ducting phase completely disappears. At the concentration
c=0 the model reduces to the Ising model, and thus there is
a critical temperature for superconductivity of kBT /J�2.4 at
this concentration.

E. Adding a magnetic field: The antiferromagnetic case

If we apply a non-negative uniform magnetic field to the
system, the ferro-antiferromagnetic symmetry is broken. We
choose to consider the antiferromagnetic case here because
then there are two competing effects: the magnetic field
tends to align the spins, whereas the exchange interaction
wants to order the spins antiferromagnetically. The magnetic
field H will be measured in units of J1.

Kimel et al.11 studied the antiferromagnetic BEG model
in the presence of a magnetic field using Monte Carlo simu-
lations. Their results at zero temperature suggest that the
behavior of the system should be separated into three quali-
tatively distinct regions, namely, H� �0,2	, H� �2,4	, and
H� �4,�	. We consider here the cases K=1 and 0.1 for val-
ues of H within each of these intervals.

1. H=1.5

First, we consider a magnetic field in the interval �0,2	,
namely, H=1.5. Both for K=1 and 0.1, the results �not

shown� are qualitatively the same as in the case of H=0.
This behavior was expected from the phase diagram of the
single-component BEG model at zero temperature. Because
the magnetic field tries to align the spins, the antiferromag-
netic transition temperature is lower than in the absence of a
magnetic field.

2. H=2.5

In the usual BEG model, the first-order phase transition
disappears in the presence of a magnetic field H� �2,4	. At
zero temperature, there is a second-order phase transition
between a state with �i=0 at every site and a checkerboard
phase, where one sublattice has �i=0 at every site and the
other one has �i=−1. There is also a transition between the
checkerboard state and an antiferromagnetic phase, but this
transition is absent at nonzero temperature.11

For K=1, the behavior of the two-component BEG model
is still very similar to the case H=0. For K=0.1, the first-
order phase transition disappears and therefore there is no
phase-separated region �see Fig. 5�. We do observe an anti-
ferromagnetic and a superconducting phase, but it is not
clear from the figure whether the two phases overlap. To
better understand this low-T intermediate regime, we also
simulated the problem at a relative coupling strength of
K=0.5. In Fig. 6, we clearly observe that there is a region
where antiferromagnetism and superconductivity coexist,
without true phase separation, since the first-order phase
transition has disappeared.

3. H=5

In the original BEG model, when the magnetic field is
increased to a value higher than H=4 at zero temperature,
antiferromagnetism totally disappears because the spins tend
to align with the magnetic field.11 The system is therefore
magnetized, but not because of the nearest-neighbor interac-
tions. Therefore, this is not really ferromagnetism; but for the
sake of simplicity, we denote it like this. For the case of
K=1, we observe a phase with ferromagnetic and supercon-
ducting ordering and a ferromagnetic phase �not shown�. For
K=0.1, we find another interesting phase, namely, a ferro-
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FIG. 4. �Color online� Phase diagram for temperature �in units
of J1 /kB� versus concentration in the absence of a magnetic field,
for a relative coupling constant of K=0.1. N, S, FM, and PS indi-
cate the normal phase, superconductivity, ferromagnetism, and
phase separation, respectively. Solid lines represent second-order
phase transitions; dashed lines represent first-order ones. Lines are
guides for the eyes. Snapshots of the simulation are shown. Black
�white� represents �i=1 �−1�; red �blue� si=1 �−1�. Notice that
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0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1c

H=2.5 K=0.1

�
�

�
��

�

�
�

�

� AF
�

1
T

/J
B

k

S

N

FIG. 5. Phase diagram for temperature �in units of J1 /kB� versus
concentration at a magnetic field H=2.5 and at a relative coupling
constant K=0.1. N, S, and AF denote the normal phase, supercon-
ductivity, and antiferromagnetism, respectively. Solid lines repre-
sent second-order phase transitions and the lines are guides for the
eyes.

LOOIS, BARKEMA, AND SMITH PHYSICAL REVIEW B 78, 184519 �2008�

184519-4



magnetic checkerboard phase, consisting of two sublattices
�see Fig. 7�. At the first sublattice, all sites are randomly
occupied by phases with a value of si=1 or si=−1. At the
second one, all sites are occupied by the spin that is favored
by the magnetic field �i=−1. This phase is most likely to
occur at a concentration of c=0.5 because in this case a
perfect checkerboard is possible.

III. ADDING A TRAP POTENTIAL

A. Blume-Emery-Griffiths model

Because experiments with cold atoms are often carried
out in a trap, we will add a harmonic potential to the original
2D BEG Hamiltonian to describe mixtures of fermions and
bosons in a trap. In general, the potential felt by the bosons is
different from the one felt by the fermions, which implies
that we must include two terms,

ab�
i

�xi
2 + yi

2��i
2 + af�

i

�xi
2 + yi

2��1 − �i
2� . �9�

Here, xi and yi are the horizontal and vertical distances of site
i measured from the center of the lattice, in lattice units, and
ab and af measure how much the bosons �the states with
�i= �1� and the fermions �the states with �i=0� feel the
influence of the trap. If ab=af, this term is constant, and the
phase diagram is not modified. We will consider the case
ab�af, which is the most relevant experimentally. We can
then rewrite Eq. �9� and add it to the BEG Hamiltonian, thus
obtaining

H = − J�
�ij�

�i� j + D�
i

�i
2 + a�

i

�xi
2 + yi

2��i
2, �10�

where a=ab−af. This means that effectively, the bosons will
feel a stronger tendency to go to the center of the trap.

In the limit of a→�, all the states with �i= �1 will clus-
ter in the center of the trap, and therefore the ordering tem-
perature will be the same as in the Ising model. Note that the
maximum value of the extra term in the Hamiltonian will
depend on the size of the lattice. This way of including the
trapping potential is comparable with the work of Gygi
et al.,12 where a spatial-dependent chemical potential was
added to the Bose-Hubbard model in order to describe
bosonic atoms in an optical lattice.

We simulated this model using the same procedures as for
the original BEG model and the two-component BEG model.
The results for three different strengths of the trapping po-
tential are plotted in Fig. 8. In the BEG model without a trap,
there is a second-order phase transition from a normal state
to an ordered state and a first-order phase transition to a
phase-separated region.2 For the three values of a considered
here, we do not find a first-order phase transition any more.
A part of the first-order phase-transition line disappears and a
part changes into a second-order one.

We see that for a small difference between the trap poten-
tial felt by the bosons and the fermions, a /J=0.001, the tran-
sition temperatures are very similar to the case without a
trap. For a large difference, a /J=0.1, the transition tempera-
tures approach the transition temperature of the Ising model
for almost all concentrations, as expected. When the states
with �i= �1 are ordered, we will not speak of a superfluid
state but of a condensed state because we now consider
bosons in general.

It is important to estimate at which temperature the sys-
tem starts to feel the influence of the trapping potential. Let
us assume that a cluster of size m feels the potential when the
energy difference between the state with this cluster in the
center and in the corner of the lattice is of the order kBT /J.
For a lattice of size L2, this estimation results in

maL2

2J



kBT

J
. �11�

In this approximation, a single particle �m=1� in a lattice of
size L=41 will start to feel the potential if kBT /J
800a. For
a /J=0.1 and 0.01 this results in kBT /J
80 and kBT /J
8,
respectively, in both cases much higher than the temperatures
we are interested in because ordering starts around
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kBT /J�2.4. Therefore, the single particles will experience
the influence of the trap in the entire temperature range of
Figs. 8�b� and 8�c�. For a /J=0.001, a single particle will feel
the trapping potential for temperatures lower than
kBT /J
0.8. However, for higher temperatures the system
already orders, and therefore there are some large clusters
that according to Eq. �11� will feel the potential already at
much higher temperatures. This reasoning is in agreement
with the snapshots in Fig. 8�a�. For a /J=0.001, we clearly
observe the influence of the trap when the states with
�i= �1 have clustered. In the disordered state, the influence
is less visible. For a /J=0.1 and 0.01, we indeed see the
influence of the trap for all temperatures, even in the disor-
dered state.

B. Two-component Blume-Emery-Griffiths model

Analogous to Sec. III A, we will also add a trapping po-
tential to the 2D two-component BEG model. In the latter,
both the states with �i= �1 and si= �1 describe bosons that
both can condense. Therefore, this model can be applied to
study cold-atom mixtures with two species of bosons. We
will consider the realistic case that the two species feel dif-
ferent trapping potentials. Therefore, we add the extra terms

a��
i

�xi
2 + yi

2��i
2 + as�

i

�xi
2 + yi

2�si
2 �12�

to the Hamiltonian. Because at every lattice site �i
2+si

2=1,
we can rewrite this term and add it to the two-component
BEG Hamiltonian to get

H = − J1�
�ij�

�i� j − J2�
�ij�

sisj + D�
i

�i
2 + a�

i

�xi
2 + yi

2��i
2,

�13�

where a=a�−as is now the difference between the potentials
felt by the two species of bosons. Now, the bosons with
�i= �1 have a stronger tendency to go to the center of the
lattice.

The results of our simulations are plotted in Figs. 9 and
10. We considered two different strengths of the trapping
potential and two different ratios of the coupling strengths of
the bosons, namely, K=J2 /J1=1 and K=0.1. For K=0.1, the
right part of the first-order phase transition disappears and
the left one becomes second order �see Fig. 9�; whereas for
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FIG. 8. �Color online� Phase diagrams of the original BEG
model with a trapping potential, showing temperature �in units of
J /kB� versus concentration. N denotes the normal unordered state
and C the condensed phase, in which the sites with �i= �1 are
ordered. Lines are guides for the eyes and represent second-order
phase transitions. Snapshots are shown, where blue represents
�i=1, red represents �i=−1, and white represents �i=0. The pa-
rameter a=ab−af measures the difference in the intensity of the
trapping potential felt by the bosons and the fermions. �a� a /J
=0.001; �b� a /J=0.01; and �c� a /J=0.1.
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FIG. 9. �Color online� Phase diagrams of the two-component
BEG model with a trapping potential, showing temperature �in units
of J1 /kB� versus concentration for a relative coupling constant
K=0.1. N denotes the normal unordered state; C� and Cs denote the
phases where the bosons represented by the state with �i= �1,
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and represent second-order phase transitions. Snapshots are shown,
where black and white represent �i= �1, and red and blue repre-
sent si= �1. The parameter a=a�−as measures the difference be-
tween the potentials felt by the two species of bosons. �a�
a /J1=0.001; �b� a /J1=0.01.
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K=1 both left and right parts of the first-order phase transi-
tion are converted into second order �see Fig. 10�.

In the limit of a→�, all the sites with �i= �1 will have
clustered in the center of the lattice and all sites with
si= �1 will have clustered at the corners. Therefore, for all
concentrations, the system behaves as two uncoupled Ising
models. In the case of K=1, we see indeed that the transition
temperatures for both species approach the Ising transition
temperature. For K=0.1, because J2 is ten times smaller than
J1, one of the species will order at the Ising transition tem-
perature and the other one at one tenth of the Ising transition
temperature.

To find the temperature at which the system starts to feel
the presence of the trap, we can make the same analysis as in
Sec. III A. Also here, we see in the snapshots of Figs. 9 and
10 that for a /J1=0.1 �not shown� and a /J1=0.01, the system
always feels the influence of the trap and for a /J1=0.001, it
does only when the system is ordered. If we inspect Fig.
10�a�, we see that there is a phase Cs in which the bosons
represented by si= �1 are ordered, but the bosons repre-
sented by �i= �1 are not. This is somewhat surprising. A
reason for the occurrence of this phase is that when all the
bosons that have the tendency to go to the center of the trap
have clustered there, automatically also the other bosons
have clustered at the edge. Therefore, they can have nearest-
neighbor interactions and they can easily order. It remains to
be seen whether such a phase indeed occurs in experiments.

From the theoretical point of view, it would be interesting to
also allow for states with �i=si=0 to verify the stability of
this phase, when we relax the constraint that every lattice site
must be occupied by one of the bosons. Note that for small
enough concentrations, this phase will always occur since the
bosons s are hardly diluted by the bosons �.

IV. COMPARISON WITH EXPERIMENTS

A. Magnetic superconductors

There are several examples of cerium-based supercon-
ductors, for example, CeCoIn5 and CeIrIn5, as well as anti-
ferromagnets that contain this element, such as CeRhIn5,
CeCoCd5, CeRhCd5, and CeIrCd5. Let us consider CeCoIn5
and CeCoCd5. These two materials have two elements in
common �Ce and Co� and differ in the third element. By
doping CeCoIn5 with Cd on the In site, we can change the
superconductor CeCoIn5 into an antiferromagnet. There are
more of these cerium-based pairs, and therefore, this class of
materials is appropriate for studying the interplay between
superconductivity and magnetism.

Let us consider the heavy-fermion superconductor
CeCoIn5, with cadmium doping on the In site. This material
has the highest superconducting transition temperature
�Tc=2.3 K� of all heavy fermions, and its electronic struc-
ture is quasi-2D.13 Nicklas et al.14 and Pham et al.15 deter-
mined the antiferromagnetic and superconducting onset tem-
peratures of this material as a function of doping by elastic
neutron-scattering, specific-heat, and resistivity measure-
ments. Their results are plotted in Fig. 11. For experimental
details we refer the reader to Ref. 14. The phase diagram of
CeCo�In1−xCdx�5 shows three ordered phases: a supercon-
ducting phase, a commensurate antiferromagnetic phase, and
a region where superconductivity and antiferromagnetism
microscopically coexist.

It is interesting to observe that in this material antiferro-
magnetism suddenly disappears at the point where the onset
temperatures for superconductivity and antiferromagnetism
are equal. This feature, however, may change in the presence
of an applied magnetic field. In Fig. 12 we see a schematic
phase diagram of unconventional superconductors in
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FIG. 10. �Color online� Phase diagrams of the two-component
BEG model with a trapping potential, showing temperature �in units
of J1 /kB� versus concentration for a relative coupling constant
K=1. N denotes the normal unordered state; C� and Cs denote the
phases where the bosons represented by the state with �i= �1,
respectively, si= �1 are condensed. Lines are guides for the eyes
and represent second-order phase transitions. Snapshots are shown,
where black and white represent �i= �1, and red and blue repre-
sent si= �1. The parameter a=a�−as measures the difference be-
tween the potentials felt by the two species of bosons. �a�
a /J1=0.001; �b� a /J1=0.01.

FIG. 11. Phase diagram temperature versus doping of
CeCo�In1−xCdx�5. AF denotes antiferromagnetism and SC denotes
superconductivity. The figure is extracted from Ref. 14.
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temperature-control parameter space. In the case of
CeCo�In1−xCdx�5, the control parameter would be doping.
Another example of such a parameter is pressure. Park
et al.16 determined the phase diagram of CeRhIn5 in
temperature-pressure space with and without a magnetic
field. Without a magnetic field, they also found this abrupt
disappearance of the incommensurate antiferromagnetic or-
der at �1. However, when they applied a field of 33 kOe, the
line of the magnetic ordering temperature went smoothly
down to zero at �2. Such a phase diagram shows many simi-
larities with Fig. 6 if we identify pressure with inverse con-
centration in our model. Indeed, for an external magnetic
field of H=2.5 and a relative coupling constant K=0.5 �see
Fig. 6�, the phase diagram shows the same three ordered
phases. Further, the coexisting phase is not phase separated.

Finally, we consider the compound CeIr�In1−xCdx�5 �see
Fig. 13 and Ref. 15�. For this material, it is not clear if there
is a region where superconductivity and magnetism coexist.
If there is such a region, it is in a small doping interval. The
phase diagram of this material strongly resembles the phase
diagram of the two-component BEG model with an external
magnetic field of H=2.5 and a relative coupling strength of
K=0.1 �see Fig. 5�. Although this experiment was also car-
ried out without an external magnetic field, we only find
similarities with our model in the presence of a magnetic
field.

B. Cold-atom systems

In 2006, two experimental groups, Ketterle and
co-workers17 at MIT and Hulet and co-workers18 at Rice
University, performed experiments with imbalanced ultra-
cold 6Li atoms in a trap and obtained results which seemed
to be contradictory at first sight. The MIT group measured a
transition between a normal and a superfluid phase at a po-
larization of P�0.70, whereas the group at Rice University
observed a transition between two superfluid phases at P
�0.09. Here, P measures the imbalance between the spin-up
and the spin-down atoms,

P =
N↑ − N↓

N↑ + N↓
. �14�

Gubbels et al.19 set up a theoretical model to describe these
imbalanced Fermi mixtures and determined a general phase
diagram in temperature-polarization space that can explain
the observations of both groups. The topology of their phase
diagram shows large similarities with the phase diagram of
the BEG model. We can understand this resemblance as fol-
lows. In the BEG model, the concentration c is the fraction
of lattice sites with �i=0 and thus the fraction of the system
that cannot condense. The polarization P is a measure for the
difference of the atoms in the spin-up and the spin-down
states and thus for the number of fermions that remain after
the others have paired. The atoms with spin up and spin
down will form pairs and such a pair can be described as a
boson. Therefore, the polarization is also a measure for the
fraction of the system that cannot condense, and the concen-
tration can be mapped onto the polarization. We can identify
the paired atoms �bosons�, with the states �i= �1 and the
remaining fermions with �i=0; see Fig. 1.

The experiments with 6Li are carried out in a trap, and the
theoretical model of Gubbels et al.19 only included the pres-
ence of the trap by using the local-density approximation.
Now, we would like to compare their phase diagram with our
results of the BEG model with a trapping potential in Figs. 9
and 10. Although in the case of imbalanced fermions the
frequency 	 of the optical trap felt by the pairs of fermions
�bosons� and the remaining unpaired fermions is the same,
the mass of the bosons is twice as large and the potential
constant ab is thus larger than af. This means that the com-
parison must be made with the BEG model in a trap. In this
model, the first-order phase transition measured by a jump in
the concentration as a function of the anisotropy field D has
disappeared, thus there is no true transition to a phase-
separated regime. However, if we inspect the snapshots, we
see that for low enough temperatures or large enough trap-
ping potential, there still is a clear separation between the
condensed bosons and the fermions, suggesting some kind of
effective phase separation. We note that in experiments,
phase separation is measured by inspecting the radii of the
clouds of the atoms in the different hyperfine states and not
by a jump in some order parameter.18 Our results thus sug-
gest that the measured different radii are not per se an evi-
dence of a true thermodynamic phase separation. Further ex-
periments are required to clarify this issue.
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FIG. 12. Schematic phase diagram of unconventional supercon-
ductors in temperature versus control-parameter space. AF denotes
antiferromagnetism, S denotes superconductivity, and NFL denotes
a non-Fermi liquid. Experimentally, antiferromagnetism often dis-
appears abruptly at some critical value �1 of the control parameter,
although one would expect a magnetic quantum critical point at
some value �2 of the control parameter.

FIG. 13. Phase diagram temperature versus cadmium doping of
the heavy fermion CeIr�In1−xCdx�5. SC denotes superconductivity
and AFM denotes antiferromagnetism. The figure is extracted from
Ref. 15.
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Although our model describes qualitatively the experi-
mentally observed phases, it cannot capture the fine details
of recent experimental results. Studies by Shin et al.20 indi-
cated that there is no superfluid phase or phase-separated
phase for polarizations above P�0.36. By a quantum Monte
Carlo approach, Lobo et al.21 predicted a phase transition
between a normal and a superfluid state at a polarization of
P�0.39 at zero temperature, and Gubbels and Stoof22 recov-
ered these results using a Wilsonian renormalization-group
theory.

V. CONCLUSIONS

We simulated a two-component extension of the 2D BEG
model without an external magnetic field and determined the
phase diagram in the concentration-temperature space. In the
region where magnetism and superconductivity coexist, the
system is always phase separated. We added a magnetic field
to our model and considered the antiferromagnetic case. In
this case, we also find phase diagrams with true coexistence
of two ordered phases. These diagrams are comparable with
the phase diagram of doped heavy fermions in the presence
of a magnetic field.

In order to describe cold-atom systems, we added a trap-
ping potential to the BEG model and our extension of this
model. The added potential changes the phase-separation re-
gime conceptually. We cannot speak anymore about true
phase separation but more about a crossover to a phase-
separated region. We argue that the BEG model with a trap-
ping potential can be used to model imbalanced Fermi mix-
tures. However, there are still quantitative differences with
experiments, which our model is not able to cover. We also
made predictions for the phase diagram of boson-boson mix-
tures based on our simulations of the two-component BEG
model with a trapping potential. Although there are no avail-
able experimental data on boson-boson mixtures, we hope
that our work can motivate further studies in this direction.
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